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It  is pointed out that the Ewald and Darwin theories, although they follow very different mathe- 
matical methods, lead exactly to the same results when appropriate physical assumption~ are made. 

I t  seems not to be generally known that  for a sym- 
metrical Bragg reflexion given by a perfect non- 
absorbing crystal different reflexion curves were given 
by Darwin (1914a, b) and by Ewald (1918, 1925) out- 
side the region of total reflexion. A useful table com- 
paring the results of the two theories is given by 
Zachariasen (1945, p. 142) and is reproduced in Table 1. 
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Table 1 
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-~-~/3 ---- 1.155 }~/2= 1.061 

In this, combining formulae (3.141) of Zachariasen 
(1945) and (6.49, 6-51) of Compton & Allison (1935), 
we have 

(O--OB)sin20B ~#o 
for Ewald's theory, (1) 

and 
( 0 -  OB) sin 20 B 3 

y ........... ~A-- . . . . . . . . .  ~ for Darwin's theory. (2) 

I t  is readily seen that  the two expressions are equal, for 
~0 and ~H are the Fourier coefficients in the expansion 
of the dielectric density ( e - l )  and 3/A=~k0/~a, 
2A = ~kH. 

It  is interesting to examine the origin of the differ- 
ence between the two formulae. I t  cannot arise from 
the fundamental assumptions which are the same in 
both theories, viz. that  account is taken of the multiple 
reflexions between the two directions of incidence and 
of refiexion. It  is actually due to the difference in the 
assumptions regarding the wave reflected back inter- 
nally from the back surface of the crystal plate (the 
X-rays being incident on the plate from the front). 
Darwin assumes in effect that  the plate is of such thick- 
ness t that  e - ~ 4 1  (/z being the linear absorption 
coefficient), which ensures that  no ray of appreciable 
intensity will emerge from the front surface of the plate 

after having traversed it in the two directions even for 
angles for which there is no primary extinction. This 
contradicts the assumption made otherwise of a non- 

absorbing crystal, but may be taken to be a reasonable 
approximation for the region where the much more 
effective primary extinction ceases to make the calcu- 
lation of the reflected intensity a fully defined problem. 
Ewald's formula is obtained without introducing 
absorption, by dropping the assumption that  the 
crystal plate can be assigned a definite thickness to the 
accuracy of within an X-ray wave-length. If  the plate 
were truly plane-parallel, high-order interferences be- 
tween the rays from the front and the back would arise, 
ms from a Lummer-Gehrcke plate. Ewald's solution is 
obtained by ihtegrating over varying thickness of the 
plate, while assuming that  at any time the plate is 
perfectly plane-parallel. This, again, is an artificial 
idealization. 

The precise significance of the difference between the 
two formulae is obtained from the following con- 
siderations where both can be derived as two fimiting 
cases of a finite absorbing crystal, according to which 
of two variables is first made to reach the limit, the 
number of planes in the crystal to infinity or the 
absorption coefficient to zero. Starting from Darwin's 
difference equations, it is possible to solve them for a 
crystal consisting of a finite number (n) of reflecting 
planes (Ramachandran, 1942, 1944). If, in this 
formula, one puts n-+oc, then one obtains the formula 
given by Prins (1930), in which, putting the absorption 
coefficient/Z zero, one arrives at Darwin's formula as 
given above. I t  is obvious that  the first limit is in- 
applicable when /z--0, so that  one has implicitly 
brought in Darwin's assumption in this derivation also. 
On the other hand, if one first puts the absorption 
coefficient zero i n  the formula of a finite crystal and 
then proceeds to the limit n-+oo, the intensity tends to 
no limit at all outside the region of total reflexion, but 
fluctuates owing to high-order interferences. One can, 
however, arrive at Ewald's formula without the arti- 
ficial assumption of varying thickness by the following 
method. If  one examines the solution for a fairly thick 
finite crystal (Ramachandran, 1942), one finds that  
there is a primary maximum of angular width nearly 
equal to that  for infinite thickness, together with a 
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series of subsidiary max ima  on either side. As the 
thickness is increased, these subsidiary max ima  come 
closer and closer, unti l  in the l imit ing case one would not 
observe them at all (it would require an infinite re- 
solving power for this), but  only a uniform intensi ty  
corresponding to an average over a cycle. Performing 
this average, one obtains for the intensi ty  an expression 
1 - I  tanhc~ I, where c o s h ~ = y  of equation (2) (Ranla- 
chandran,  1944), which is identical with tha t  given in 
Table 1 under Ewald. Incidental ly ,  it m a y  be noted 
that  the dynamica l  theory also gives Prins 's  formula for 
an absorbing crystal (Kohler, 1933) from which 
Darwin 's  formula can be derived by the process given 
above. It  is thus grat i fying tha t  the two theories, with 
their  entirely different mathemat ica l  techniques, lead 
to identical  results when the appropriate  physical 
assumptions are put  in. 

I t  would be clear from the above tha t  the problem of 
the Bragg reflexion by a perfect non-absorbing, or not 
sufficiently absorbing, crystal  plate requires a more 
detailed specification of the conditions at the back of 
the plate. Ewald & Schmid (1936) have shown that ,  
given any  such specification, the exact in tensi ty  curve 
can be obtained from Ewald ' s  solution by simple 
considerations of optical path without rediscussing the 

F R O M  A P E R F E C T  C R Y S T A L  

dynamics  of field propagation. This can also be done by 
the Darwin method, using the mathemat ica l  procedure 
given by Ramachand ran  (1942, 1944). 

I am very grateful to Prof. Ewald for some discussions 
by correspondence on this subject and to the Royal  
Commission for the Exhibi t ion of 1851 for the grant  of 
a research scholarship. 
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A metho(l i.~ given for the calculation of a two-dimensional Patterson transfi)rrn fr()m the intensity 
data of a fibre diagram. This vector map is a section parallel to the fibre axis through the cylindrically 
symmetrical three-dimensional Patterson transform of tile fibre. 

1. It has become a fairly general practice to begin the 
theoretical part  of the X-ray analysis of single crystals 
by computing the Pat terson diagram or vector map. 
This is the Fourier t ransform of the intensi ty data,  and 
it offers a convenient synopsis of what can be derived 
about  the crystal structure without introducing any  
assumptions.  

From powder or ' amorphous '  diagrams statistics 
of absolute values of atomic distances can be obtained 
from a similar t ransform, as Zernike & Prins (1927) 
have pointed out. (Since orientation is random in 
crystal powder or amorphous material,  it is evident  tha t  
no information whatever can be derived fronl these 
diagrams about the direction of the interatomic dis- 

tances.) Warren  and his school have used this method 
with considerable success in their  investigations of glass, 
rubber,  etc. The equivalent  method of tackling the 
typical  fibre diagrams, however, seems never to have 
been developed, and it was, therefore, considered worth 
while to fill this gap in the theory because the fibre 
texture is, in most macromolecular  substances, the 
highest degree of orientation a t ta ined up to now. 

2. In the following we confine ourselves to the ideal 
fibre texture, defined by (a) strict periodicity in the 
direction of the fibre axis, and (b) completely random 
orientation of azimuth round this direction. No 
assumptions need be made as to a more or less regular 
arrangement  in directions other than tile fibre axis. 


